
www.manaraa.com

Technical Report RT/004/2004

Optimistic Consistency with Version Vector
Weighted Voting

João Barreto and Paulo Ferreira
INESC-ID/IST

Distributed Systems Group
Rua Alves Redol N 9, 1000-029 Lisboa
[joao.barreto,paulo.ferreira]@inesc-id.pt

May 2004



www.manaraa.com

Abstract

Mobile and loosely-coupled environments call for decentralized optimistic replication protocols that pro-
vide highly available access to shared objects. A fundamental property of most optimistic protocols is to
guarantee an eventual consensus on a commit order among the set of tentatively issued updates. In this
paper we propose a replicated object protocol that employs a novel epidemic weighted voting algorithm
based on version vectors for achieving such goal. An epidemic voting strategy eliminates the single point
of failure of primary commit approaches, while not imposing the simultaneous accessibility of a plurality
quorum.

Our protocol introduces a significant optimization over basic epidemic weighted voting solutions by allow-
ing multiple-update candidates through the use of version vectors. As a result, it is able to commit multiple,
causally related updates at a single distributed election round. We demonstrate that our proposed algo-
rithm is especially advantageous when considering realistic, non-uniform update models. We support such
assumptions by presenting comparison results obtained from side-by-side execution of reference protocols in
a simulated environment.



www.manaraa.com

1 Introduction

Data replication is a fundamental mechanism for
most distributed systems for a number of highly de-
sirable properties. It enhances performance and scal-
ability by enabling local data replicas to be accessed
rather than a centralized physical data source, po-
tentially located on a remote server. Replication im-
proves fault tolerance if replicas are ensured to be
kept consistent: should one replica be lost, the con-
tents of any other consistent replica can be used to
recover the lost data. Finally, it increases availabil-
ity as applications may continue to access their local
replicas even in case of failure or network inaccessi-
bility of other replicas.

In particular, optimistic replication protocols [1]
are of extreme importance in mobile and other
loosely-coupled network environments. The nature of
these environments calls for decentralized replication
protocols that are able to provide highly available full
access to shared objects. Such requirement is accom-
plished by optimistic replication strategies, which, in
contrast to their pessimistic counterparts, enable up-
dates to be issued at any one replica regardless of the
availability of other replicas. The replication proto-
col is then responsible for disseminating such updates
among the remaining replicas.

As a trade-off, the issue of consistency of an op-
timistically replicated system is problematic. Since
replicas are allowed to be updated at any time and
circumstance, updates may conflict if issued concur-
rently at distinct replicas. Some optimistic repli-
cation protocols ensure that, from such a possibly
inconsistent tentative state, replicas evolve towards
an eventual consistent stable state. For this end, a
distributed consensus algorithm is executed so as to
reach an agreement on a common order in which ten-
tative updates should be committed. Such consis-
tency approach can be regarded as a hybrid strategy:
at the immediate update time, only weak consistency
guarantees are provided upon the tentative replica
values; on an eventual point in the future, however,
a strongly consistent stable value is attained.

There are many scenarios where users and appli-
cations that, in order to benefit from high availabil-
ity, are willing to work with temporarily tentative
data, provided that a commitment agreement regard-
ing such data will eventually be reached. Consider,

for instance, a worker carrying a laptop that becomes
disconnected from his corporate fixed network file
server after leaving his office and heading to a work
meeting. If, by chance, he comes to think of some
changes to a report that is currently replicated at his
laptop cache, he might expect to be able to modify it
at that moment, even if tentatively. Afterwards, he
would return to his office and synchronize his laptop’s
replicas with the fixed file server. Provided that his
team colleagues had not modified the shared report
during his absence, his tentative updates would then
be safely committed in the fixed file server.

If a pessimistic protocol was employed, the previ-
ous example would require the mobile user to obtain,
in advance, a lock over the shared report. However,
it is not always possible to correctly anticipate that
a given replica will be requested for update. For in-
stance, if all the team colleagues had similar probabil-
ities of modifying the shared report, granting the to-
ken to one of them would possibly prevent progress to
be made by other worker that unexpectedly decided
to modify the file. Such unpleasant effect would have
a particular impact in the case of extended disconnec-
tions of the lock holders, which is a usual occurrence
in mobile networks.

Furthermore, consider that the mobile worker hap-
pens to meet the remaining of his team colleagues
while away from the office who, in an ad-hoc fash-
ion, establish a short term work group to review the
shared report. If every worker is carrying some mo-
bile device with a cached replica of the report, a col-
laborative activity might be carried if each worker is
able to perform updates to its local replica and have
such updates propagated to the remaining replicas.
A set of causally related tentative updates will result
from such activity. Hopefully, if no update is concur-
rently issued from outside the group, such tentative
work will be eventually committed.

Hence, the high availability provided by an opti-
mistic replication strategy is especially interesting in
such scenarios as the previous ones. However, the
usefulness of one such approach strongly depends on
the ability of the underlying replication protocol of
efficiently achieving a commitment decision concern-
ing the tentatively issued data. Users are typically
not inclined towards working on tentative data unless
they trust the protocol to rapidly achieve a strongly
consistent commitment decision regarding such data.

1



www.manaraa.com

Aiming at such central objective, this paper pro-
poses a novel optimistic replication protocol to ac-
complish efficient and highly available update com-
mitment through the use of an epidemic weighted
voting algorithm based on version vectors. The use
of a voting approach eliminates the single point of
failure that characterizes primary commit approaches
[2]. Instead, the unavailability of any individual
replica is not prohibitive of the progress of the up-
date commitment process. Moreover, commitment
agreement is accomplished without the need for a plu-
rality quorum of replica servers to be simultaneously
accessible, as happens with dynamic voting schemes
[3, 4]. Instead, voting information flows epidemically
between replicas and update commitment is based
solely on local information.

The solution we propose has two main contribu-
tions. Firstly, our voting algorithm introduces a sig-
nificant optimization over basic epidemic weighted
voting solutions by allowing multiple update candi-
dates to participate in an election. By using version
vectors, candidates consisting of one or more causally
related updates may be voted and committed by run-
ning a single distributed election round.

As a result, the overall number of anti-entropy ses-
sions required to commit updates is decreased when
compared to a basic weighted voting protocol. Hence,
update commitment delay is minimized and so even-
tual strong consistency guarantees are more rapidly
delivered to applications. Namely, such reduction is
substantial in scenarios where frequent causally re-
lated updates are generated tentatively by applica-
tions. The examples presented above are representa-
tive of such update patterns. In worst case scenarios,
our protocol is similar to basic weighted voting pro-
tocols.

Finally, we present and discuss simulated results
that compare the behavior of our proposed solution
with other reference protocols. Namely, we measure
the protocols adequacy to non-uniform update mod-
els that are expected to better reflect typical real us-
age scenarios [5, 6].

2 Related Work

The issue of optimistic data replication for mobile
and loosely coupled environments has been addressed
by a number of projects [7, 1], with the common in-

tent of offering high data availability. Most of the
proposed solutions share the goal of our work by
being able to eventually enforce convergence from
weakly consistent tentative replica values towards a
strongly consistent stable form.

Roam [5] is a scalable optimistic replicated file
system intended for mobile environments. Roam
ensures an eventual convergence to a total order
among causally related replica updates. Neverthe-
less, Roam’s consistency protocol does not regard any
notion of update commitment, which means that it
cannot assert whether the replica values accessed by
applications are strongly consistent or not.

Other solutions overcome such important limita-
tion by complementing the tentative view of a replica
with a strongly consistent view obtained from the
exclusive application of committed updates. Three
main approaches for update commitment can be dis-
tinguished in related work.

One approach proposed by Golding [8] relies on the
maintenance, at each replica, of a worst case estimate
of the updates received at every replica, through the
use of ack vectors. Based on such estimate, each indi-
vidual server commits updates when it is certain that
an update has been received by every replica. A main
limitation of this solution is that the unavailability of
any single replica stalls the entire commitment pro-
cess.

On the other hand, a primary commit strategy
centralizes the commitment process in a single dis-
tinguished primary replica that establishes a total
commit order over the updates it receives. Primary
commit is able to rapidly commit updates, since if
suffices for an update to be received by the primary
replica to become committed, provided that no con-
flict is found. However, should the primary replica
become unavailable, the commitment progress of up-
dates generated by replicas other than the primary
is inevitably halted. The Bayou System [9] is an
optimistic database replication system that employs
a primary commit approach. Bayou also relies on
application-specific conflict detection and resolution
procedures to attain adaptable consistency guaran-
tees. Furthermore, the Haddock-FS [10], a highly
available replicated file system designed for resource
constrained mobile environments, is also based on the
primary commit approach.

Finally, a third approach uses voting so as to al-

2



www.manaraa.com

low a plurality quorum to commit an update. In
particular, Deno [11] relies on an epidemic voting
protocol to support object replication in a transac-
tional framework for loosely-connected environments.
Deno requires one entire election round to be com-
pleted in order to commit each single update, if only
non-commutable updates are considered. This is ac-
ceptable when applications are interested in knowing
the commitment outcome of each tentative issued up-
date before issuing the next one. However, in some
usage scenarios users and applications are interested
in tentatively issuing multiple, causally related ten-
tative updates before acknowledging their commit-
ment. In such situations, the commitment delay im-
posed by Deno’s voting algorithm becomes unaccept-
ably higher than that of a primary commit approach.

3 Consistency Protocol

The following discussion considers a model where a
set of logical objects is replicated at multiple server
hosts. An object replica at a given server provides
local applications with access to a version of the ob-
ject contents, as stored by the replica. Such accesses
may read or modify the object contents. In the case
of the latter, an update is issued by the server and
applied to the replica.

Updates issued at a given replica are propagated
to other servers in an epidemic fashion in order to
eventually achieve object consistency. The local ex-
ecution of an update is assumed to be recoverable,
atomic and deterministic. The former means that a
replica will not reach an inconsistent value if its fails
before the update execution completes. It follows
from the other two properties that the execution of
the same ordered sequence of updates at two distinct
replicas in the same initial consistent state will yield
an identical final state.

Hereafter, we assume an asynchronous system in
which servers can only fail silently. Network parti-
tions may also occur, thus restricting connectivity
between servers which happen to be located in dis-
tinct partitions.

For simplicity, we consider that each logical object
is replicated at every server in the system. Neverthe-
less, the consistency protocol is trivially extensible
to support selective replication [12], i.e. where each
object may be replicated at a sub-set of servers. For

the sake of generality, the set of replicas may be dy-
namic, and thus change with the creation or removal
of new servers.

3.1 Weighted Voting

Due to the optimistic nature of the consistency proto-
col, an update issued at a local replica is not immedi-
ately committed at every remaining replica. Instead,
such update is considered to be in a tentative form
since conflicting updates may still be issued at other
replicas. The consistency protocol is responsible for
committing such tentative updates into a total order
that will be eventually reflected at every replica. Our
protocol achieves this goal through a weighted voting
approach [13].

In a weighted voting consistency protocol, concur-
rent tentative updates are regarded as rival candi-
dates in an election. The servers replicating a given
logical object act as voters whose votes determine the
outcome of each election between candidate updates
to the object. A candidate update wins an election
by collecting a plurality of votes, in which case it is
committed and its rival candidates are discarded.

Elections consider a fixed per-object currency
scheme, in which each voter is associated with a given
amount of currency that determines its weight dur-
ing voting rounds. The global currency of a logical
object, distributed among its replica servers, equals a
fixed amount of 1. Currencies can be exchanged be-
tween servers and the currency held by failed servers
can be recovered by running a currency reevaluation
election, as discussed in [14].

3.1.1 Version Vector Candidates

Candidate updates in an election are identified by
a version vector [15] representing the replica version
that is reached if the update was committed. A ver-
sion vector, v, is a logical time stamp comprised by
an array of N integers, one for each replica of the
logical object. Given a replica version stamped with
a version vector vk, each entry vk[i], for i = 0, 1, .., N ,
represents the number of updates issued at replica i
that affect the version in consideration. Version vec-
tors are defined as follows:

1. The initial version of an object is denoted by v0,
where v0[i] = 0 for i = 0, 1, .., N ;

3



www.manaraa.com

2. An update issued at object replica r with version
vk generates a new version vj = advancer(vk),
defined by:

(a) ∀i 6= r, advancer(vk)[i] = vk[i];

(b) advancer(vk)[r] = vk[r] + 1.

Once identified by version vectors, v1 and v2, two
object versions can be compared as follows:

1. v1 = v2 iff v1[i] = v2[i] for i = 0, 1, .., N ;

2. v1 ≤ v2 iff v1[i] ≤ v2[i] for i = 0, 1, .., N ;

Important statements can be made about the
causality between two distinct replica versions iden-
tified by version vectors v1 and v2. Firstly, it can
be proven that if and only if v1 ≤ v2 and v1 6= v2,
or simply v1 < v2, then version v2 causally succeeds
v1 according to the happened before relation defined
by Lamport [16]. Otherwise, if neither v1 ≤ v2 nor
v2 ≤ v2, then both versions are causally concurrent,
or v1 ‖ v2.

In some cases, applications will be interested in
generating more than one tentative update prior to
its commitment decision. These may include dis-
connected mobile applications and ad-hoc groups of
mobile applications working cooperatively in the ab-
sence of a plurality quorum. Since the commitment
decision may not be taken in the short-term, these
applications may wish to issue a sequence of multi-
ple, causally ordered tentative updates.

The flexibility brought by candidate identification
using version vectors allows such sequence of updates
to run for the current election as a whole. In this case,
the candidate is represented by the version vector
corresponding to the tentative version obtained if the
entire update sequence was applied to the replica.
As the next sections explain, the voting algorithm is
responsible for deciding if the update sequence or a
prefix of it will become committed.

The consistency protocol requires each replica r to
maintain the following state:

• stableTSr, which consists of a version vector
that identifies the most recent stable version that
is currently known by replica r, obtained af-
ter the ordered application of all committed up-
dates;

• votesr[1..N ], which stores, for each server k =
1, 2, .., N , the version vector corresponding to the
candidate voted for by k, as known by r; or ⊥, if
the vote of such server has not yet been known
to r;

• curr[1..N ], which stores, for each server k =
1, 2, .., N whose vote replica r has knowledge of,
the currency associated with such vote.

As the next sections describe, voting information
flows in an epidemic fashion among servers and the
decision to commit an update is based only on local
replica information. These are important properties
for operation under mobile and loosely-coupled envi-
ronments1.

3.2 Access to Stable and Tentative Views

Each server is able to offer two possibly distinct views
over the value of a replica to its applications and
users: the stable and tentative views. The first view
reflects the value of the replicated object that is iden-
tified by stableTS. This value is obtained by the or-
dered application of each committed update that has
resulted from the elections that have already been
completed at the local server.

Issuing an update from this view causes further lo-
cal accesses to the replica to be blocked until the re-
spective election is locally completed and the update
is committed or discarded. It follows from the latter
that the stable view offers traditional sequential con-
sistency guarantees [17], acceptable for applications
with strong consistency demands.

On the other hand, the tentative view exposes the
value that corresponds to the candidate version that
is currently voted by the local server. If no vote has
yet been cast by the local server, both the stable and
tentative views yield the same replica value.

If waiting for a commitment agreement for each
update is not acceptable, applications may opt to
access the weakly consistent value provided by the

1It should be pointed out that the protocol proposed here-
after is orthogonal to the issues associated with the actual
transference and storage of updates. Namely, the decisions
of (1) whether to transfer and store all tentative updates be-
longing to every election candidate (in addition to the updates
corresponding to the candidate voted by each own replica) and
(2) when to discard locally logged updates are not imposed by
the protocol and, therefore, are not addressed in the paper.

4



www.manaraa.com

tentative view. In this case, generating an update is
a non-blocking operation that simply adds the new
tentative update to the candidate currently voted by
the server in consideration. Since the tentative view
reflects the version determined by such candidate, the
newly issued update is immediately visible in further
accesses to the tentative view.

Whichever view is being used, issuing an update on
a replica r causes a new candidate run for the current
election according to the following rules:

1. If votesr[r] = ⊥, then votesr[r] ←
advancer(stableTSr) and curr[r] = currencyr;

2. Otherwise,

• If tentative view is selected, then
votesr[r]← advancer(votesr[r]);

• If stable view is selected, do nothing.

The last rule comes from the fact that a server
is not allowed to voted in more than one causally
concurrent candidate. In case the local server has
already voted for a tentative candidate created from
another server, an update issued from the stable view
will be causally concurrent to any other tentative up-
date, including the former. In contrast, tentative up-
dates are issued upon the version resulting from the
currently voted tentative candidate. Therefore, they
are causally related to such candidate and can be suf-
fixed to it as a candidate for the elections.

3.3 Anti-entropy

Voting information is propagated through the system
by anti-entropy sessions established between pairs of
accessible replicas. An anti-entropy session is a uni-
directional pull-based interaction in which a request-
ing replica, rA, updates its local election knowledge
with information obtained from another replica, rB.
In case rB has more up-to-date election information,
it transfers such information to rA. The latter then
incorporates such information according to the fol-
lowing procedure:

1. If stableTSA < stableTSB then

stableTSA ← stableTSB and

∀vk ∈ votesr s.t. vk‖stableTSB or vk ≤
stableTSB, votesr[k]← ⊥;

2. If stableTSA = stableTSB then

(a) If votesA[A] = ⊥ or votesA[A] <
votesB[B] then votesA[A]← votesB[B] and
curA[A]← currencyA;

(b) ∀k s.t. votesA[k] = ⊥ or votesA[k] <
votesB[k], votesA[k] ← votesB[k] and
curA[k]← curB[k].

The first step ensures that, in case rB knows about
a more recent stable version, rA will adopt it. This
means that rA will regard the elections that origi-
nated such new stable version as completed and so
begin a new election from that point. Such new elec-
tion is prepared by keeping only the voting informa-
tion that will still be meaningful for the outcome of
the election. Namely, these are the votes on candi-
dates that causally succeed the stable version.

As a second step, if both replicas are found to be
currently handling the same election, then rA updates
its voting information with the one received from rB.
Firstly, if rA has not yet voted in the current election,
it is persuaded to vote in the same candidate as the
one voted by rB. Secondly, rA stores each vote that
it was not yet aware of or whose candidate is more
complete than the one it previously had knowledge of.
An example of update generation and propagation
through anti-entropy is illustrated in Figure 1.

3.4 Election decision

The candidates being voted in an election represent
update paths that traverse through one of more ver-
sions beyond the initial point defined by the stable
version, stableTS. These possibly divergent candi-
date update paths may share common prefix sub-
paths. The definition of the maximum common ver-
sion expresses such notion.

Definition 1: Maximum common version.
Given two version vectors, v1 = 〈e1,1, e1,2, .., e1,N 〉

and v2 = 〈e2,1, e2,2, .., e2,N 〉, their maximum com-
mon version, mcv(v1, v2), is given by a version vec-
tor 〈m1,m2, ..,mN 〉 where ∀k,mk = min(e1,k, e2,k).
For simplicity, we assume mcv(v1, v2, .., vm) to be ob-
tained by mcv(mcv(mcv(v1, v2)), ...), vm).

5



www.manaraa.com

Figure 1: Example of update generation and propagation through anti-entropy sessions, using tentative view. Four replicas
of the same logical object, r1, r2, r3 and r4, start from an common initial stable version, 〈0, 0, 0, 0〉 and currency is unevenly
divided among the replicas.

Theorem 1: Let v1, .., vm, v1, .., vm ∈ votesr, be
one or more candidate versions known by replica r,
each connoting a tentative update path starting from
the stable version, stableTSr. Their maximum com-
mon version, mcv(v1, .., vm), constitutes the farthest
version of an update sub-path that is mutually tra-
versed by the update paths of v1, .., vm. Comple-
mentarily, the total currency voted on such common
sub-path is obtained by votedr(mcv(v1, .., vm)) =
curr[1] + ... + curr[N ].

It follows from the definition of a fixed currency
scheme, as mentioned in Section 3.1, that the to-
tal currency amount stored in curr at each replica
r is lower than or equal to 1. We define the
uncommittedr value at each replica r at a given mo-
ment to be:

Definition 2: uncommittedr =
∑

cur[k] :
votesr[k] 6=⊥

The voting algorithm is responsible for progres-
sively determining common sub-paths of candidate

versions that manage to obtain a plurality of votes.
This decision is based on the definition of maximum
common version among the set of candidate ver-
sions voted at a given replica and on the value of
uncommittedr, according to the following definition:

Definition 3: Let w be a version vector s.t. w =
mcv(v1, .., vm) where v1, .., vm ∈ votesr. w wins an
election when:

1. votesr(w) > 0.5, or

2. ∀k s.t. k = mvc(vk1 , .., vkn), vk1 , .., vkn ∈ votesr

and k ‖ w,

(a) votesr(w) > votesr(k) + uncommitedr, or

(b) votesr(w) = votesr(k) + uncommitedr and
w <lex k.

The above rules state the conditions that guaran-
tee that a candidate has collected sufficient votes to
win an election. The votes may constitute a majority,
when the amount of currency voted on the winning
candidate surpasses 0.5; or a simple plurality, when

6



www.manaraa.com

Figure 2: Election decision for replica r2 at the final state
in Figure 1. Among the potential maximum common versions,
obtained from the candidates known by r2, candidate 〈1, 0, 0, 1〉
is found to have collected a plurality of votes and, thus, updates
u1 and u4 will be committed in that order.

the voted currency is greater than the maximum po-
tentially obtainable currency of any other rival can-
didate. Ties are decided by choosing the candidate
whose version vector is lexically lower. If one repre-
sents each version vector as a number whose digits
are the elements of the vector, such representation
can be numerically compared, thus inducing a lexical
order, <lex, in the version vector space.

Determining if a candidate has won an election de-
pends exclusively on information that is locally avail-
able at each replica. This means that, once having
collected enough voting information, a given replica
is able to decide, by its own, to commit a candidate
version that locally fulfills the election winning con-
ditions. Hence, update commitment is accomplished
in a purely decentralized manner. An example is de-
picted in Figure 2.

After finding a new winner version vector, w, a
replica r takes the following steps in order to accept
the election decision and prepare for the next elec-
tion:

1. Commit the ordered sequence of updates that
comprise the update path defined between ver-
sions stableTSr and w;

2. stableTSr ← w;

3. ∀vk ∈ votesr s.t. vk‖w or vk ≤ w,

votesr[k]← ⊥.

After committing the winner updates, the second
step accepts the election result by setting the winning
version as the new stable version. A new election can
then take place by resetting all the irrelevant votes
to ⊥.

Theorem 2: After all elections have been com-
pleted at every replica in the system:
∀r, t,

1. stableTSr = stableTSt, and

2. r has committed the same ordered sequence of
updates as t.

4 Evaluation

This section presents and discusses simulated results
that compare the behavior of our proposed solu-
tion to reference protocols mentioned in Section 2.
C# implementations of the primary commit, basic
weighted voting and version vector weighted voting
protocols were measured under a simulated environ-
ment. The simulator includes a collection of replicas
of a common logical object that are able to issue up-
dates and mutually propagate such update informa-
tion. Time is divided into logical time slices where
each replica (1) pulls anti-entropy information from
a partner randomly selected from the set of avail-
able replicas and, according to a certain probabilistic
update model, (2) generates a maximum of one ten-
tative update.

Each experiment was performed by running the
three protocols side-by-side under the same exact
conditions, until a total number of 20 updates had
been committed or discarded by every replica. In
order to obtain accurate estimates, each experimen-
tal setting was tested 10 times and the average mea-
surements were considered. All measurements were
obtained with the following basic parameters: 10 run-
ning replicas and a probability of 70% that one among
all replicas would issue one update at each time slice.

Three update models are analyzed. Firstly, a uni-
form update model where updates may be issued at
any replica with the same probability. Furthermore,
we consider two additional models that assume non-
uniform update behavior, suggested from empirical
evidence described in related work: a hot-spot update
model, which assumes that updates typically occur
in a small set of replicas [5]; and a token exchange
model, where users, through their social interaction
and semantic knowledge, ensure that only a single up-
to-date replica is, with greater probability, updated
at each moment [6].

7



www.manaraa.com

Figure 3: Update commitment times for the simulated update models with complete server availability.

A first experiment measured commitment delay,
i.e. the time taken between the creation of a tenta-
tive update and its commitment, for each protocol on
each update model. Since, at every protocol, update
commitment is a local decision of each replica, differ-
ent commitment delays are observed by each replica,
as shown in Figure 3. As expected, primary commit
accomplishes the lowest average delay times, since it
requires fewer messages to be propagated in order to
commit an update, provided that the optimal anti-
entropy partners are selected.

Regarding both weighted voting alternatives in a
uniform update model, no significant difference is
observed, which is entailed by the relatively low
frequency of commitment of multiple update can-
didates. However, as one evolves to the non-
uniform update models, where multiple update can-
didates are expectedly more frequent, our protocol
achieves a substantial optimization in commitment
delay (28.7% and 37.4% average reduction against
basic weighted voting for hot-spot and token ex-
change models, respectively). The change induced by
the non-uniform models is also verified with respect
to the primary commit protocol, where the average
commitment delay difference is strongly reduced: to
32.3% and 0.7% overheads, respectively. More pre-
cisely, in the case of the latter, an average of 7 replicas
is able to commit an update more rapidly using our
protocol than using a primary commit protocol.

Nevertheless, comparing update commitment de-
lays is not sufficient to provide a complete view over
the behavior of protocols since the discarded updates
are not accounted. Furthermore, the issue of server
availability needs to be considered as a central vari-
able for the efficiency of each protocol.

With this intent, a second experiment was per-
formed in which each server had a parameterizable
probability of becoming disconnected from the re-
maining group of servers at the beginning of each
time slice. Each such disconnected server was then
unable to communicate with other servers but was
still allowed to issue updates. With a 10% probabil-
ity, a disconnected server would again become avail-
able at the end of each time slice.

Figure 4 shows the update commitment rate of
each protocol for different server disconnection prob-
abilities in each update model. As expected, the up-
date commitment rate is strongly dependent on the
time a protocol takes to commit tentative updates.
A lower commitment delay of the latter means that
updates will be in a tentative state for a shorter du-
ration, therefore reducing the possibility of tentative
update concurrency and, consequently, the rate of
discarded updates. With 0% disconnection, update
commitment rates at all update models are exclu-
sively determined by the average commitment de-
lays analyzed in the first experiment: primary com-
mit achieves a slight advantage over our protocol
(0.1%, 1.0%, 4%), increased with respect to the basic
weighted voting protocol (10.0%, 8.0%, 42.0%).

However, with non-null disconnection probabili-
ties, the impact of server unavailability becomes very
influential on the efficiency of the protocols. As a
result, the observed commitment rate of every proto-
col decreases as the disconnection probability grows.
In the case of the primary commit protocol, this is
explained by the consequences of occasional unavail-
ability periods of the primary replica to the commit-
ment progress; on the other hand, weighted voting
protocols take longer to reach a plurality quorum

8



www.manaraa.com

Figure 4: Commitment rates for the simulated update models in the presence of temporarily disconnected servers.

when the number of available voters is reduced.
However, it is suggested that the impact of tem-

porary unavailability of servers has a greater impact
in the case of the primary commit protocol, due to
its reliance on a single point of failure. In particular,
the observed commitment rate of the primary com-
mit protocol is lower than that of our protocol for
most of the disconnection situations shown in Figure
4.

5 Conclusions

Mobile and loosely-coupled environments call for de-
centralized optimistic replication protocols that pro-
vide highly available access to shared objects. A fun-
damental property of most optimistic protocols is to
guarantee an eventual consensus on a commit order
among the set of tentatively issued updates so as to
deliver eventual strong guarantees to applications.

In this paper we propose a replicated object pro-
tocol that employs a novel epidemic weighted vot-
ing algorithm based on version vectors for achieving
such goal. This algorithm introduces an optimiza-
tion over the basic weighted voting solution by al-
lowing multiple causally ordered update candidates
to be committed at a single election round. From
the results obtained from a side-by-side execution of
reference protocols in a simulated environment, we
demonstrate that our solution is advantageous in re-
alistic non-uniform update models, both with respect
to basic weighted voting and primary commit proto-
cols.

As future work, we intend to address the draw-
backs that arise from the use of a static form of ver-
sion vectors: namely, the assumption of a complete
knowledge of group membership and the vector size
overhead (in comparison to simple integer values re-
quired by a basic weighted voting protocol [13]). We
hope to accomplish this by studying the incorpora-
tion of dynamic version vectors [5] into the voting
algorithm in order to eliminate the first problem and
substantially reduce the impact of the second.

References

[1] Susan B. Davidson, Hector Garcia-Molina, and Dale
Skeen. Consistency in a partitioned network: a survey.
ACM Computing Surveys (CSUR), 17(3):341–370, 1985.

[2] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. De-
mers, M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in bayou, a weakly connected replicated storage
system. In Proceedings of the fifteenth ACM symposium on
Operating systems principles, pages 172–182. ACM Press,
1995.

[3] Y. Amir and A. Wool. Evaluating quorum systems over
the internet. In Fault Tolerant Computing Symposium
(FTCS), June 1996.

[4] S. Jajodia and D. Mutchler. Dynamic voting algorithms
for maintaining the consistency of a replicated database.
In ACM Transactions on Database Systems, volume 15,
pages 230–280, 1990.

[5] P. Reiher D. Ratner and G. Popek. Roam: A scalable
replication system for mobile computing. In Mobility in
Databases and Distributed Systems, 1999.

[6] T. W. Page, Jr., R. G. Guy, J. S. Heidemann, D. H. Rat-
ner, P. L. Reiher, A. Goel, G. H. Kuenning, and G. J.
Popek. Perspectives on optimistically replicated, peer-to-
peer filing. Softw. Pract. Exper., 28(2):155–180, 1998.

9



www.manaraa.com

[7] Yasushi Saito and Marc Shapiro. Optimistic replication.
Technical Report MSR-TR-2003-60, Microsoft Research,
October 2003.

[8] Richerd Golding. Modeling replica divergence in a weak-
consistency protocol for global-scale distributed data
bases. Technical Report UCSC-CRL-93-09, UC Santa
Cruz, February 1993.

[9] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry,
M. M. Theimer, and B. B. Welch. The bayou architecture:
Support for data sharing among mobile users. In Pro-
ceedings IEEE Workshop on Mobile Computing Systems
&amp; Applications, pages 2–7, Santa Cruz, California,
8-9 1994.

[10] J. Barreto and P. Ferreira. A replicated file system for
resource constrained mobile devices. In Proceedings of
IADIS International Conference on Applied Computing,
2004.

[11] U. Cetintemel, P. J. Keleher, B. Bhattacharjee, and M. J.
Franklin. Deno: A decentralized, peer-to-peer object
replication system for mobile and weakly-connected en-
vironments. IEEE Transactions on Computer Systems
(TOCS), 52, July 2003.

[12] David H. Ratner, Peter L. Reiher, Gerald J. Popek, and
Richard G. Guy. Peer replication with selective control.
Lecture Notes in Computer Science, 1748, 1999.

[13] P. Keleher. Decentralized replicated-object protocols. In
Proc. of the 18th Annual ACM Symp. on Principles of
Distributed Computing (PODC’99), 1999.

[14] Ugur Cetintemel and Pete Keleher. Light-weight currency
management mechanisms in mobile and weakly-connected
environments. The Journal of Distributed and Parallel
Databases (JDPD), 11:53–71, 2002.

[15] G.J.; Rudisin G.; Stoughton A.; Walker B.J.; Walton E.;
Chow J.M.; Edwards D.; Kiser S. Parker, D.S.; Popek and
C. Kline. Detection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engineering SE-
9,, (3):240–7, 1983.

[16] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[17] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28:690–691, September
1979.

10


